Prolonged atrial natriuretic peptide exposure stimulates guanylyl cyclase-a degradation.
نویسندگان
چکیده
Natriuretic peptide receptor-A (NPR-A), also known as guanylyl cyclase-A, is a transmembrane receptor guanylyl cyclase that is activated by the cardiac hormones atrial natriuretic peptide and B-type natriuretic peptide. Although ligand-dependent NPR-A degradation (also known as down-regulation) is widely acknowledged in human and animal models of volume overload, down-regulation in cultured cells is controversial. Here, we examined the effect of ANP exposure on cellular NPR-A levels as a function of time. Relative receptor concentrations were estimated using guanylyl cyclase and immunoblot assays in a wide variety of cell lines that endogenously or exogenously expressed low or high numbers of receptors. ANP exposures of 1 h markedly reduced hormone-dependent but not detergent-dependent guanylyl cyclase activities in membranes from exposed cells. However, 1-h ANP exposures did not significantly reduce NPR-A concentrations in any cell line. In contrast, exposures of greater than 1 h reduced receptor concentrations in a time-dependent manner. The time required for half of the receptors to be degraded (t(1/2)) in primary bovine aortic endothelial and immortalized HeLa cells was approximately 8 h. In contrast, a 24-h exposure of ANP to 293T cells stably overexpressing NPR-A caused less than half of the receptors to be degraded. To our knowledge, this is the first report to directly measure NPR-A down-regulation in endogenously expressing cells. We conclude that down-regulation is a universal property of NPR-A but is relatively slow and varies with receptor expression levels and cell type.
منابع مشابه
Internalization and degradation of natriuretic peptide receptor-A is stimulated by ligand binding
Background Natriuretic peptide receptor-A (NPR-A) is a transmembrane receptor guanylyl cyclase that binds and mediates the effects of atrial and B-type natriuretic peptides (ANP/ BNP). Internalization and ligand-dependent degradation of NPR-A is controversial, in part due to the use of ligand binding studies to predict the cellular location of the receptor. Here, we used a more direct sequentia...
متن کاملC-type natriuretic peptide neuromodulates independently of guanylyl cyclase activation.
Of the four endogenous members of the natriuretic peptide family, only atrial natriuretic peptide has been demonstrated to have neuromodulatory effects. This study compares the neuromodulatory effects of atrial natriuretic peptide and a recently identified natriuretic peptide, C-type natriuretic peptide, in the rabbit isolated vas deferens. The ability of these peptides to alter cyclic nucleoti...
متن کاملMolecular biology of natriuretic peptides and nitric oxide synthases.
Natriuretic peptides and nitric oxide play important roles in cardiovascular and renal physiology and disease. The natriuretic peptides - atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide - comprise a family of proteins that participate in the integrated control of intravascular volume and arterial blood pressure. The natriuretic peptides differentially bind ...
متن کاملRenal hyporesponsiveness to atrial natriuretic peptide in congestive heart failure results from reduced atrial natriuretic peptide receptor concentrations.
Atrial natriuretic peptide (ANP) and B-type natriuretic peptide decrease blood pressure and cardiac hypertrophy by activating natriuretic peptide receptor A (NPR-A), a transmembrane guanylyl cyclase also known as guanylyl cyclase A. Inactivation of NPR-A is a potential mechanism for the renal hyporesponsiveness observed in congestive heart failure (CHF) but direct data supporting this hypothesi...
متن کاملA novel pathway of cGMP
Background Cardiac atrial natriuretic peptide (ANP) regulates arterial blood pressure, moderates cardiomyocyte growth, and stimulates angiogenesis and metabolism. ANP binds to the transmembrane guanylyl cyclase (GC) receptor, GCA to exert its diverse functions. This involves a cGMPdependent signaling pathway preventing pathological [Ca]i raises in myocytes. In chronic cardiac hypertrophy, howev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrinology
دوره 151 6 شماره
صفحات -
تاریخ انتشار 2010